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Designing Reduced-Order Linear Multivariable Controllers
Using Experimentally Derived Plant Data

W. Garth Frazier* and R. Dennis Irwint
Ohio University, Athens, Ohio 45701

An iterative numerical algorithm for simultaneously improving multiple performance and stability robustness
criteria for multivariable feedback systems is developed. The unsatisfied design criteria are improved by updating
the free parameters of an initial, stabilizing controller's state-space matrices. Analytical expressions for the
gradients of the design criteria are employed to determine a parameter correction that improves all of the
feasible, unsatisfied design criteria at each iteration. A controller design is performed using the algorithm with
experimentally derived data from a large space structure test facility. Experimental results of the controller's
performance at the facility are presented.
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Nomenclature
= identity matrix
= set of complex-valued n x m matrices
= set of real numbers
= set of real-valued n x m matrices
= real part of a complex quantity
= kih largest singular value of a matrix
= matrix with (ij) entry equal to d//d[•]/_/
= complex-conjugate matrix transpose
: matrix transpose
= Euclidean norm of a vector

Introduction

I N recent years, renewed research interest in frequency-do-
main analysis techniques for multivariable linear time-

invariant control systems has led to many new and important
results.1'2 Most control-law synthesis procedures proposed for
achieving the constraints imposed by these results, such as
linear-quadratic-Gaussian with loop transfer recovery (LQG/
LTR) and more recently //«,, require a mathematical model
and considerable insight into the underlying mathematical the-
ory to achieve a successful design. This insight is needed in
selecting the proper weighting matrices or weighting functions
to cast what is naturally a multiple-constraints satisfaction
problem into an unconstrained optimization problem. Al-
though designers possessing considerable experience with these
techniques have a feel for the proper choice of weights, others
may spend a significant amount of time attempting to find an
acceptable solution.

As an alternative to these synthesis procedures, some nu-
merical techniques have been proposed for achieving the con-
straints imposed by the results in Refs. 1 and 2. One technique
that appears to be effective is that of Boyd et al.3 and Boyd and
Barratt.4 Their approach is to cast the constraints for the de-
sign problem into a form such that the optimization is convex
over the set of controllers that stabilize a given model of the
system. Therefore, the solution is the global optimum and is
obtained by standard mathematical programming techniques.
Unfortunately, some constraints cannot be cast into a form
that is closed-loop convex; important ones being open-loop
controller stability, controller order, and controller structure
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(e.g., diagonal). A mathematical model of the plant is also
required.

A method close in spirit to the technique presented here is
that proposed by Newsom and Mukhopadhyay.5 In their ap-
proach, the singular-value gradients of a return difference op-
erator are used to iteratively change the parameters of a nom-
inal controller in order to improve the stability robustness
properties of a system. The parameter correction vector at
each iteration is chosen to decrease a cumulative measure
(sum of squares) of all constraint violations. The disadvantage
of this correction vector is that, while the cumulative mea-
sure may improve, the worst violation is not guaranteed to
improve. Recently, Mukhopadhyay6 has extended the ap-
proach to incorporate other constraints, although a cumula-
tive measure is still employed to monitor each constraint's
improvement.

The algorithm presented here simultaneously includes per-
formance constraints and stability robustness constraints. It
also has the advantage that the worst constraint violations are
improved at each iteration as long as the constraints are locally
feasible in the parameter space.

Problem Formulation
The problem may be stated as follows: given 1) experimen-

tally derived frequency-response data from a multivariable
plant (continuous time or discrete time); 2) frequency-domain
design constraints (and/or time-domain constraints that can
be expressed in terms of frequency-dependent functions); and
3) an initial stabilizing controller of any order or structure,
iteratively alter the free parameters of the controller to im-
prove or, better yet, satisfy the design constraints. This is a
multiple-constraint improvement problem and not an opti-
mization problem. Unfortunately, this does not necessarily
reduce the computational effort required to obtain an accept-
able design.

A key point is the desire to use experimentally derived data
taken from the multivariable plant. It is felt by the authors that
in many cases this data is more reliable for design purposes
than analytical models and models derived from system-iden-
tification procedures. This is especially so if the system is of
4 * high" order as are many flexible aerospace structures. If a
reliable model is available, an initial design could be done
using analytical techniques and then an iterative technique
applied to this initial design using experimental data for fur-
ther design improvements.

The central issue in most parameter-search algorithms is the
determination of an acceptable parameter correction vector at
each iteration. This is often complicated by the existence of
multiple constraints on various functions of the parameters.
Achieving multiple constraints is precisely the problem faced
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in control system design when both performance and stabil-
ity robustness requirements are specified. An effective ap-
proach to solving this type of problem was developed by
Mitchell7 and was applied to traditional gain and phase mar-
gin constraints. In this presentation, a similar approach is
applied to frequency-dependent singular-value constraints rel-
evant to multivariable feedback system performance and sta-
bility robustness.

Algorithm Description
Let

(1)

be a set of frequencies at which the frequency-response data of
the plant is available. Let

s = (2)

denote a vector of parameters (elements of the state-space
matrices of the controllers) on which the frequency-dependent
functions

k = 1,2,... ,L (3)

depend, where Q^CQ and Qk contain Nk<N points. Define
the design constraints by

(4)

where each ck : Qk -*/? is defined according to the desired shape
of/*.

Now define, the complete set of constraint violations by

(5)Sv(s)= U L i u j l S

and denote the elements of Sv(s) by hj(s), j = 1,2, . . . ,NV,
where 7VV is the total number of violations. It follows (drop-
ping the dependence on s for brevity) that the gradient of each
hj is given by

dhj
ITOS 2 OS

(6)

A fundamental result from optimization theory is that to
improve a single violation /*/, a parameter correction vector
d must be chosen with the property gf d > 0. Since, in general,
there are many violations to be improved at any one iteration,
d should be chosen to satisfy gfd>Q, y = 1,2,... ,7VV. A suf-
ficient condition for such a direction to exist is that the system

be consistent, where

(7)

(8)

and w/>0 for j = 1,2,... ,NV. This is an NvxP system of
linear equations. In practice, Eq. (7) is almost always under de-
termined because there are usually more free parameters than
violations. Hence, there may be many solutions. To obtain the
solution having minimum 2-norm, define

J=[gl gNv] (9)

and suppose that J has rank r. Then J has the singular-value
expansion8

where a, >0, / = 1,2,... ,r, are the nonzero singular values of
J and «/, v/, / = 1,2, . . . , r , are the associated left and right
singular vectors. If w is in the range of JT, then

d= (11)

Although the preceding development indicates a general
procedure for choosing an acceptable correction vector, it does
not indicate how to choose the precise entries of w for good
algorithm performance. Since it is desired to improve all of the
violations simultaneously, it seems reasonable to choose H>
such that each of the violations is considered to be equally
important. Following the development of Mitchell,7 if the ele-
ments of w are chosen such that

/ = \\gj
then from Eq. (7)

Kjd = \\gj\\-.

Using the fact that

gjd = ||*,|| \ cos 0y = \\gj\\

where 0y is the angle between gj and d, it is clear that

cos Q =

(12)

(13)

(14)

(15)

J= (10)

Therefore, this choice results in a correction vector that forms
an equal angle between itself and each gj .

Because of the nonlinearity of the parameter space, it is
necessary to determine a satisfactory step length for the correc-
tion vector at each iteration. In most iterative algorithms, the
determination of the step length at each iteration is treated as
an optimization problem. Unfortunately, this optimization
can require many constraint function evaluations and would
be computationally prohibitive in this algorithm.

Therefore, the choice of an appropriate step-length parame-
ter at each iteration is based on several other criteria: 1) main-
taining closed-loop stability, 2) maintaining open-loop con-
troller stability properties, and 3) improvement of the violated
constraints. To maintain closed-loop stability using discrete
frequency data (as opposed to a mathematical model), the
multivariable Nyquist criterion9 is employed. Although it is
not a reliable indicator of relative stability margins, it has
proven effective in this algorithm for maintaining closed-loop
stability. Controller stability is achieved by simply monitoring
the controller's poles. Although controller stability is not an
absolute requirement, it is desirable in most applications, e.g.,
when loop failure is possible. As for the third criterion, the
violated constraints are simply checked for improvements at
each iteration. If they have improved, the parameter vector is
updated and the step length is increased by a user-defined
factor for use at the next iteration. If not, the step length is
reduced and the constraints are checked again. This process is
repeated until improvements are registered or until the mini-
mum step length allowed is reached. If the minimum step
length is reached, then either a violated constraint has reached
a local minimum or two gradients are in local opposition. In
the case of a local minimum, the design can either be accepted
or the constraint relaxed. The action to be taken if two gradi-
ents are opposed is now discussed.

In the case of two gradients in local opposition, the matrix
/ will be nearly rank deficient and the correction vector d,
although defined, will almost be orthogonal to all of the gra-
dient vectors. Hence, improving the constraints with an ac-
ceptable step length is highly unlikely. If one of the opposing
gradients is not associated with the worst violation for that
particular constraint, the problem can be circumvented by
dropping that gradient from J at the current iteration. If,
however, both gradients are associated with the worst viola-
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Input: data, constraints,
and starting controller

Compute constraint violations

Fig. 1 Flowchart of the design algorithm.

Fig. 2 Schematic of the ACES structure.

tions of different constraints, then the constraints are not lo-
cally feasible and this technique will fail to improve the con-
straints. Hence, the algorithm is not guaranteed to satisfy all
of the design constraints, but it will improve the violated con-
straints until no further local improvement is possible. It is
also important to note that even if the constraints are satisfied,
they are only satisfied at the frequencies for which the design
was performed. A flowchart of the complete algorithm is given
in Fig. 1.

Design Example
A schematic of the NASA Marshall Space Flight Center

(MSFC) Active Control Technique Evaluation for Spacecraft
(ACES) structure is shown in Fig. 2. The ACES structure is
suitable for the study of line-of-sight (LOS) and vibration-
suppression control issues as pertaining to flexible aerospace
structures. The primary element of the ACES structure, a
spare Voyager magnetometer boom, is a lightly damped beam
measuring approximately 45 ft in length and weighing about
51b.

The goal of the control system design is to maintain the
reflected laser beam in the center of the antenna (location of
the detector) in the presence of disturbances at the base excita-
tion table (BET). This is to be accomplished by use of the
following actuators: image motion compensation (IMC) gim-
bals (2 axes), advanced gimbal system (AGS) (3 axes), linear
momentum exchange devices (LMEDs) (two 2-axes devices);
and the sensors: base rate gyros (3 axes), tip accelerometers
(3 axes), tip rate gyros (3 axes), LMED positions and accelera-
tions (2 axes each), and the optical position detector (2 axes).
As explained subsequently, our design only employed a subset
of these sensors and actuators. The digital controller is to be
implemented on the HP9000 computer located at the facility
using the fixed sampling rate of 50 Hz and a fixed, one-

sample-period computational delay. The results of other con-
troller designs for the ACES structure have been reported in
the literature.10

The experimental open-loop frequency response from the
y-axis IMC gimbal to the x-axis LOS error is shown in Fig. 3.
The effect of the computational delay is quite apparent from
analysis of the phase characteristic. The frequency responses
of the other axes of the IMC-to-LOS are similar, although the
cross-axis terms have less gain. The open-loop frequency re-
sponse from the .y-axis AGS gimbal to the .y-axis base gyro is
shown in Fig. 4. This response reveals the numerous lightly
damped modes of the structure. The frequency responses of
other elements of the AGS-to-base gyros transfer matrix are
similar. It is noted that the cross-axis elements have consider-
able gains at some modal frequencies.

The basic design philosophy was to dampen the pendulum
modes and the bending modes of the beam by using feedback
from the base gyros to the AGS while using the IMC gimbals
with feedback from the detector to maintain the laser beam at
the center of the detector. Because of sufficient decoupling,
each two-input, two-output subsystem (AGS and IMC) was
designed separately. One concern was the impact of distur-
bances that reach the IMC gimbals through the connecting arm
that is attached to the base (as opposed to disturbances impact-
ing the detector). Because of the inherently high optical gain
from the IMC to the detector, these disturbances can have a
significant impact on the LOS error. To compensate for the
effects of these disturbances, it is not only necessary to main-
tain high loop gain over the frequency band of interest, but to
also maintain high gain in the IMC controller as well. Analysis
of Fig. 3 reveals that achieving high controller gain while also
maintaining acceptable stability margins is difficult because of
the combination of the high optical gain and the additional
phase lag introduced by the computational delay. Fortunately,
the impact of these disturbances can also be reduced by in-
creasing the damping of the modes of the beam using the AGS,
thereby reducing the motion of the base and the arm support-
ing the IMC gimbals.

The first step of the design procedure was the determination
of a set of precise closed-loop constraints such as those given
in the first column of Table 1. These particular constraints
(inherently multivariable in nature) are consistent with the
philosophy of the design. In particular, the fifth constraint is
included to suppress the effect of a lightly damped pendulum

o
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Fig. 3 Experimental frequency response from .y-axis IMC gimbal to
jc-axis LOS error.

10

200
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Fig. 4 Experimental frequency response from > -axis AGS gimbal to
j;-axis base gyro.
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10 10 10

Frequency (Hz)

Fig. 5 Initial singular-value frequency response

Table 1 Summary of multivariable design constraints

Constraint
: (0,25)
: (0,25)

n[/ + (A'GU))- 1 ] iMC>0.6, /€(0 ,25)

/€ (0 ,25)
/€(0 ,25)

n[/+ (GAXz))-!] AGS>0.7,/€ (0,25)
n[/ + (^G(z))-1]AGS>0.7,/6(0,25)

Initial
0.2289
0.2276
0.2827
0.2805
10.002
0.3649
0.3585
0.3600
0.3589

Final
0.5090
0.5056
0.6072
0.6112
14.100
0.5996
0.5988
0.6719
0.6712

Note: IMC represents IMC subsystem. AGS represents AGS subsystem. G rep-
resents plant. # represents controller. z^e-J2*-^, 7" = 0.02 s.

10* iow 10"
Frequency (Hz)

Fig. 6 Final singular-value frequency response of

100 200

Time (sec)

Fig. 7 Open-loop *-axis LOS error.

100
Time (sec)

Fig. 8 The *-axis LOS error only using LOS error feedback.

0 100 200
Time (sec)

Fig. 9 The jc-axis LOS error using LOS error feedback and base gyro
feedback.

mode. The gradients for these and other constraint functions
for a somewhat generalized feedback system are provided in
the Appendix. Next, initial stabilizing controllers were de-
signed for the IMC-to-LOS loops and for the AGS-to-base
gyro loops using one-loop-at-a-time graphical techniques with
experimental data. The effects of cross-axis coupling were ig-
nored except for stability purposes. As a result, the constraints
were far from being satisfied as can be observed by comparing
the first and second columns in Table 1. The controller for
each subsystem was tenth order. It should be noted that re-
cently developed high-fidelity models are 60th order for the
AGS-to-base gyro loops alone. Design techniques such as
LQG and H°° would yield controllers of at least this order (not
including weighting).

The multivariable design (i.e., taking cross-axis coupling
within each subsystem into account) for each subsystem was
then performed using only experimental data and the pre-
sented algorithm. The algorithm was started with the initial
tenth-order controllers just described, with no restrictions
other than stability placed on the structure of the controllers.
Implementation was on an Intel 80386 based personal com-
puter. To illustrate typical results from the algorithm, Figs. 5
and 6 show the experimental singular-value frequency re-
sponses of the return difference matrix [/ + GAT]IMC of the
initial and final controllers, respectively. The final values of all
of the constraint functions are given in the third column of
Table 1. The constraints for the AGS subsystem were not
satisfied because the algorithm reached a point such that these
constraint functions were in the condition of "local opposi-
tion" described previously.

The resulting controller was implemented at the ACES fa-
cility. The open-loop A:-axis LOS error due to an x -axis BET
disturbance intended to simulate the effect of spacecraft crew
motion is shown in Fig. 7. The dominant behavior in the
response is the lightly damped 0.15-Hz pendulum mode. After
closing only the IMC-to-LOS loops, the steady-state error and
the impact of the pendulum mode were reduced as shown in
Fig. 8. However, the first bending mode was still present. As
shown in Fig. 9, closing the IMC-to-LOS and the AGS-to-base
gyro loops further reduced the impact of the pendulum mode
and almost eliminated the first bending mode. Similar results
were obtained for the .y-axis LOS error.

The decrease in the LOS error with the AGS-to-base gyro
loops closed can be explained by the fact that significant
damping was added to the pendulum mode and the first bend-
ing mode. The same disturbance was applied with the y axis of
the BET and results quite similar to those presented here were
obtained for the various measured outputs.

Conclusions
An iterative numerical technique for the design of linear

multivariable controllers has been presented. The technique
has been shown to have the advantages that 1) multiple closed-
loop design constraints can be simultaneously considered with-
out the need for weighting schemes and the attendant increase
in controller order; 2) the design engineer can have complete
control over controller order and structure; 3) the design can
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be performed with or without the use of a parametric plant
model; and 4) locally feasible, violated constraints can be im-
proved at each iteration.

The application of the technique to a controller design for a
large aerospace structure test facility has been presented. Ex-
perimental results were also presented and appear to be very
promising. The resulting controller order was low (20th) as
compared to designs that would result from using techniques
such as linear-quadratic-Gaussian with loop transfer recovery.

Although the presented design example only involves con-
straints on matrix singular-value frequency responses, there is
no reason that the technique could not be applied to other
constraints such as the shapes of individual elements of fre-
quency-response matrices and rms measures when such con-
straints are of interest.

Appendix: Generalized Gradients
Because of the importance of the gradients in the afore-

mentioned algorithm, the analytical expressions for the gra-
dients of an arbitrary real-valued function of a controller's
state-space matrices (for which the partial derivatives exist) is
needed. Let the response of a discrete-time controller at a
single frequency o>/ be given by

D (Al)

TK) «•

where $/ = (eJuiTI — A)~l. Let/be a real-valued function of
the controller K. Then it is not difficult to show that

(A2)

(A3)

(A4)

(A5)

Since singular values play a significant role in modern linear
multivariable system analysis, the case when / is a singular
value of some frequency-dependent system transfer matrix is
of particular importance. Let T € Cnxn. Then T admits a sin-
gular-value decomposition (SVD) T=UZ,VH, where U <E Cnxn

and V£ Cnxn are unitary matrices and £ £Rnxn is a diagonal
matrix with nonnegative entries. Let/> be a real-valued param-
eter such that Tis a function of p, i.e., T= T(p). Assuming
nonrepeated singular values, the partial derivatives of the sin-
gular values of T with respect to p are given by

dp
dT
V

k = 1,2,. . . , /i (A6)

where uk and vk are the columns of U and F, respectively.11

Using Eqs. (A2-A6), the partials of the singular values of
various closed-loop transfer matrices with respect to the con-
troller state-space matrices can be calculated to form the gradi-
ent expressions.

To develop the expressions for a generalized linear time-
invariant feedback system, consider the block diagram given in
Fig. Al. Each block represents a transfer matrix (the depen-
dence on frequency is excluded for brevity) and is defined as
follows:

plant
output disturbance effect
input disturbance effect
sensors

H2 sensor noise effect
KI forward path controller defined as K\ = C^{Bi +Di
K2 feedback path controller defined as K2 = C2$2B2 + D2

Fig. Al Generalized feedback system.

where $j = (eJ'uTI — Ai)~l, / = 1,2, for discrete-time systems.
The signals are defined as follows:

r: reference
u: control
y: quantity to be controlled
n: sensor noise
du: input disturbance
dy: output disturbance

Define the loop responses

Ly = G\K\K2H\

Lu = K\K2 H\G\

and the usual sensitivity functions

(A7)

(A8)

(A9)

(A10)

Likewise, the complementary sensitivity functions are defined
by

(All)

(A12)

(A13)

(A14)

Hence, the following transfer relations hold

y = Gyrr + Gydydy + Gydudu + Gynn

and

M - Gurr + Gududu + Gudydy + Gunn

where

Gyr = SyGlKl, Gydy —— SyG2, Gy^

Gyn = -TyH2, Gur = SuKi, Gudy = -

GUdu
 = SuGi, Gun = — SUK\K2H\H2

Singular-value gradients for these transfer relations are
given below. The vectors vk and uk in the following expressions
are the singular vectors associated with the kth singular value
of the SVD of the corresponding transfer relation. Only the
partials with respect to the controller matrices K\ and K2 are
given since the gradients with respect to the state-space ma-
trices can be obtained simply by substituting these results in
Eqs. (A2-A5). ^

Return difference for input node ( S ~ l ) :

(A15)

(A16)
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Inverse complementary sensitivity for output node T~' = 7

(A17)

(A18)

Transfer from reference to output (Gyr)\

dak(Gyr) f

Transfer from output disturbance to ouput (Gydy):

dK2

Inverse complementary sensitivity for input node T~l =1

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

dak(Gyd)

Transfer from input disturbance to output (Gydu):

Transfer from sensor noise to output (Gyn):

dK2

Transfer from reference to input (Gur):

^ = [(K2HlGlSttKl-DK2HlG2vllufSu]» (A31)

S,*,]" (A32)

Transfer from input disturbance to input (Gudu):

(A33)

(A34)dK2

Transfer from sensor noise to input (Gm):

dok(Gm)
= [(K2H1GlSaKi-I)K2H1H2v^Sa]H (A35)

(A36)

Transfer from output disturbance to input (Gud ):
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